Tackling CO2 conversion challenge

By Patrick Anderson
PBN Staff Writer

A group of Brown University scientists hopes it has uncovered a climate-change-fighting breakthrough hiding in gold dust. More

To continue reading this article, please do one of the following.


Tackling CO2 conversion challenge

ENERGY SAVER: Brown University chemistry professor Shouheng Sun is part of the team that demonstrated that a unique core-shell nanoparticle is a cheaper, more active and longer-lasting fuel-cell catalyst than commercially available platinum products.

By Patrick Anderson
PBN Staff Writer

Posted 11/18/13

A group of Brown University scientists hopes it has uncovered a climate-change-fighting breakthrough hiding in gold dust.

Or gold nanoparticles, more precisely, the subject of one series of experiments within a joint Brown-Yale University research partnership investigating ways to sequester and convert earth-warming carbon dioxide into valuable industrial chemicals.

“These chemicals are made on a multimillion-ton scale and are all sourced from petroleum,” said G. Tayhas R. Palmore, professor of engineering, chemistry, and medical science at Brown and director of the joint research group, the Center for the Capture and Conversion of CO2.

“We have a number of chemical engineers with interests in taking carbon dioxide from the atmosphere or exhaust plumes and making something useful,” she said. “We think we can develop a new chemical methodology from converting CO2 instead of converting from oil.”

The Center for Capture and Conversion was launched a year and a half ago with $1.7 million in seed money from a National Science Foundation grant.

It includes seven university faculty members, six of them from Brown and one from Yale, plus students and post-doctoral researchers, for a total of 45 people in areas including molecular chemistry and carbon engineering.

Experts have known that gold, when combined with electricity, can catalyze a chemical reaction turning carbon dioxide into carbon monoxide, but no one has yet been able to do it on a large-enough scale to be commercially or environmentally viable.

Existing processes have either used too much electricity – requiring more carbon burned than is sequestered – or required too much gold. Larger pieces of gold are also insufficiently selective, producing carbon monoxide, but also unwanted hydrogen.

But Brown chemistry professor Shouheng Sun and engineering professor Andrew Peterson discovered that reducing gold to very specific size pieces – 8 nanometers – produced much better results than expected.

Next Page
PBN Hosted

Join PBN for the best networking event and party of the winter - January 15, 2015 - the Book of Lists Party at the Providence Public Library. Reserve your spot early!
  • Best Places to Work
    Enrollment is now open for the 7th annual Best Places to Work program. Winners w ...
  • Manufacturing Awards
    Applications are now being accepted for the 2nd Annual Manufacturing Awards. Dea ...
Purchase Data
Book of Lists
Book of Lists cover
PBN's annual Book of Lists has been an essential resource for the local business community for almost 30 years. The Book of Lists features a wealth of company rankings from a variety of fields and industries, including banking, health care, real estate, law, hospitality, education, not-for-profits, technology and many more.
Data icons
Data can be purchased as single lists, in either Excel or PDF format; the entire database of the published book, in Excel format; or a printed copy of the Book of Lists.
  • Purchase an e-File of a single list
  • Purchase an e-File of the entire Book of Lists database
  • Purchase a printed copy of the Book of Lists
    Latest News